基于惯性数据的人类活动识别(HAR)是从智能手机到超低功率传感器的嵌入式设备上越来越扩散的任务。由于深度学习模型的计算复杂性很高,因此大多数嵌入式HAR系统基于简单且不那么精确的经典机器学习算法。这项工作弥合了在设备上的HAR和深度学习之间的差距,提出了一组有效的一维卷积神经网络(CNN),可在通用微控制器(MCUS)上部署。我们的CNN获得了将超参数优化与子字节和混合精确量化的结合,以在分类结果和记忆职业之间找到良好的权衡。此外,我们还利用自适应推断作为正交优化,以根据处理后的输入来调整运行时的推理复杂性,从而产生更灵活的HAR系统。通过在四个数据集上进行实验,并针对超低功率RISC-V MCU,我们表明(i)我们能够为HAR获得一组丰富的帕累托(Pareto)最佳CNN,以范围超过1个数量级记忆,潜伏期和能耗; (ii)由于自适应推断,我们可以从单个CNN开始得出> 20个运行时操作模式,分类分数的不同程度高达10%,并且推理复杂性超过3倍,并且内存开销有限; (iii)在四个基准中的三个基准中,我们的表现都超过了所有以前的深度学习方法,将记忆占用率降低了100倍以上。获得更好性能(浅层和深度)的少数方法与MCU部署不兼容。 (iv)我们所有的CNN都与推理延迟<16ms的实时式evice Har兼容。他们的记忆职业在0.05-23.17 kb中有所不同,其能源消耗为0.005和61.59 UJ,可在较小的电池供应中进行多年的连续操作。
translated by 谷歌翻译
量化广泛用于云和边缘系统,以减少深层神经网络的记忆占用,潜伏期和能耗。特别是,混合精液量化,即,在网络的不同部分中使用不同的位宽度,已被证明可以提供出色的效率提高,尤其是通过自动化神经体系结构确定的优化的位宽度分配,尤其是通过自动化的位宽度分配(NAS)工具。最先进的混合精液在层面上,即,它对每个网络层的权重和激活张量使用不同的位宽度。在这项工作中,我们扩大了搜索空间,提出了一种新颖的NA,该NAS独立选择每个重量张量通道的位宽度。这为工具提供了额外的灵活性,即仅针对与最有用的功能相关的权重分配更高的精度。在MLPERF微小的基准套件上进行测试,我们获得了精确度大小与精度与能量空间的帕累托最佳模型的丰富集合。当部署在MPIC RISC-V边缘处理器上时,我们的网络将记忆和能量分别减少了63%和27%,而与层的方法相比,以相同的精度为单位。
translated by 谷歌翻译
Real-world robotic grasping can be done robustly if a complete 3D Point Cloud Data (PCD) of an object is available. However, in practice, PCDs are often incomplete when objects are viewed from few and sparse viewpoints before the grasping action, leading to the generation of wrong or inaccurate grasp poses. We propose a novel grasping strategy, named 3DSGrasp, that predicts the missing geometry from the partial PCD to produce reliable grasp poses. Our proposed PCD completion network is a Transformer-based encoder-decoder network with an Offset-Attention layer. Our network is inherently invariant to the object pose and point's permutation, which generates PCDs that are geometrically consistent and completed properly. Experiments on a wide range of partial PCD show that 3DSGrasp outperforms the best state-of-the-art method on PCD completion tasks and largely improves the grasping success rate in real-world scenarios. The code and dataset will be made available upon acceptance.
translated by 谷歌翻译
Recent works have investigated the role of graph bottlenecks in preventing long-range information propagation in message-passing graph neural networks, causing the so-called `over-squashing' phenomenon. As a remedy, graph rewiring mechanisms have been proposed as preprocessing steps. Graph Echo State Networks (GESNs) are a reservoir computing model for graphs, where node embeddings are recursively computed by an untrained message-passing function. In this paper, we show that GESNs can achieve a significantly better accuracy on six heterophilic node classification tasks without altering the graph connectivity, thus suggesting a different route for addressing the over-squashing problem.
translated by 谷歌翻译
This paper presents the development of a system able to estimate the 2D relative position of nodes in a wireless network, based on distance measurements between the nodes. The system uses ultra wide band ranging technology and the Bluetooth Low Energy protocol to acquire data. Furthermore, a nonlinear least squares problem is formulated and solved numerically for estimating the relative positions of the nodes. The localization performance of the system is validated by experimental tests, demonstrating the capability of measuring the relative position of a network comprised of 4 nodes with an accuracy of the order of 3 cm and an update rate of 10 Hz. This shows the feasibility of applying the proposed system for multi-robot cooperative localization and formation control scenarios.
translated by 谷歌翻译
Recent 3D-aware GANs rely on volumetric rendering techniques to disentangle the pose and appearance of objects, de facto generating entire 3D volumes rather than single-view 2D images from a latent code. Complex image editing tasks can be performed in standard 2D-based GANs (e.g., StyleGAN models) as manipulation of latent dimensions. However, to the best of our knowledge, similar properties have only been partially explored for 3D-aware GAN models. This work aims to fill this gap by showing the limitations of existing methods and proposing LatentSwap3D, a model-agnostic approach designed to enable attribute editing in the latent space of pre-trained 3D-aware GANs. We first identify the most relevant dimensions in the latent space of the model controlling the targeted attribute by relying on the feature importance ranking of a random forest classifier. Then, to apply the transformation, we swap the top-K most relevant latent dimensions of the image being edited with an image exhibiting the desired attribute. Despite its simplicity, LatentSwap3D provides remarkable semantic edits in a disentangled manner and outperforms alternative approaches both qualitatively and quantitatively. We demonstrate our semantic edit approach on various 3D-aware generative models such as pi-GAN, GIRAFFE, StyleSDF, MVCGAN, EG3D and VolumeGAN, and on diverse datasets, such as FFHQ, AFHQ, Cats, MetFaces, and CompCars. The project page can be found: \url{https://enisimsar.github.io/latentswap3d/}.
translated by 谷歌翻译
This paper studies the infinite-width limit of deep linear neural networks initialized with random parameters. We obtain that, when the number of neurons diverges, the training dynamics converge (in a precise sense) to the dynamics obtained from a gradient descent on an infinitely wide deterministic linear neural network. Moreover, even if the weights remain random, we get their precise law along the training dynamics, and prove a quantitative convergence result of the linear predictor in terms of the number of neurons. We finally study the continuous-time limit obtained for infinitely wide linear neural networks and show that the linear predictors of the neural network converge at an exponential rate to the minimal $\ell_2$-norm minimizer of the risk.
translated by 谷歌翻译
We investigate the sample complexity of learning the optimal arm for multi-task bandit problems. Arms consist of two components: one that is shared across tasks (that we call representation) and one that is task-specific (that we call predictor). The objective is to learn the optimal (representation, predictor)-pair for each task, under the assumption that the optimal representation is common to all tasks. Within this framework, efficient learning algorithms should transfer knowledge across tasks. We consider the best-arm identification problem for a fixed confidence, where, in each round, the learner actively selects both a task, and an arm, and observes the corresponding reward. We derive instance-specific sample complexity lower bounds satisfied by any $(\delta_G,\delta_H)$-PAC algorithm (such an algorithm identifies the best representation with probability at least $1-\delta_G$, and the best predictor for a task with probability at least $1-\delta_H$). We devise an algorithm OSRL-SC whose sample complexity approaches the lower bound, and scales at most as $H(G\log(1/\delta_G)+ X\log(1/\delta_H))$, with $X,G,H$ being, respectively, the number of tasks, representations and predictors. By comparison, this scaling is significantly better than the classical best-arm identification algorithm that scales as $HGX\log(1/\delta)$.
translated by 谷歌翻译
In recent years, there has been a growing interest in the effects of data poisoning attacks on data-driven control methods. Poisoning attacks are well-known to the Machine Learning community, which, however, make use of assumptions, such as cross-sample independence, that in general do not hold for linear dynamical systems. Consequently, these systems require different attack and detection methods than those developed for supervised learning problems in the i.i.d.\ setting. Since most data-driven control algorithms make use of the least-squares estimator, we study how poisoning impacts the least-squares estimate through the lens of statistical testing, and question in what way data poisoning attacks can be detected. We establish under which conditions the set of models compatible with the data includes the true model of the system, and we analyze different poisoning strategies for the attacker. On the basis of the arguments hereby presented, we propose a stealthy data poisoning attack on the least-squares estimator that can escape classical statistical tests, and conclude by showing the efficiency of the proposed attack.
translated by 谷歌翻译
Current methods for image-to-image translation produce compelling results, however, the applied transformation is difficult to control, since existing mechanisms are often limited and non-intuitive. We propose ParGAN, a generalization of the cycle-consistent GAN framework to learn image transformations with simple and intuitive controls. The proposed generator takes as input both an image and a parametrization of the transformation. We train this network to preserve the content of the input image while ensuring that the result is consistent with the given parametrization. Our approach does not require paired data and can learn transformations across several tasks and datasets. We show how, with disjoint image domains with no annotated parametrization, our framework can create smooth interpolations as well as learn multiple transformations simultaneously.
translated by 谷歌翻译